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Outline

m Goal: Estimate subtropical SW cloud feedback from
observations and natural variability in present climate

m Motivation
m Estimates of low cloud fraction change with warming
m Compare with GCMs, LES, and other observational studies

m This work was done by Daniel McCoy, Ryan Eastman and
Dennis Hartmann



N Motivation: SW Cloud Feedback Leading

Uncertainty in GCMs
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Goals of this Study

m Research Goals:

m Estimate the dependence of Low Cloud Fraction (LCF) on large
scale meteorological variables based on natural variability in the
present climate

m Use these relationships to estimate LCF changes for a 1K SST
warming



+
Goals of this Study

m Research Goals:

m Estimate the dependence of Low Cloud Fraction (LCF) on large
scale meteorological variables based on natural variability in the
present climate

m Use these relationships to estimate LCF changes for a 1K SST
warming

m Caveats:
m changes in GHGs or aerosols not considered
= Relationships may be correlative, not causative
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Mechanisms of LCF change
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Mechanisms of LCF change
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Data: MODIS, AIRS, ERA-Int.

m 2002-2014
m Timescale: 8-day mean, 1-day/instantaneous

m MODIS
m 8-day mean: collection 6, Random overlap assumption
m l-day/instantaneous: collection 5.1, filter for scenes with no mid or high cloud

m AIRS
m 8-day mean EIS and RHFT

m ECMWF ERA-Interim
m 4xdaily data interpolated to local Aqua overpass time

m Composite by regime, season



Results: Multiple Linear Regression
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Results: Multiple Linear Regression
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==
Quality of Regression |I

Correlation coefficient (r) between observed time series of LCC at each point and predicted LCC

1-Day

Dots denote correlation significant at 95% confidence

* Regression explains ~50% variance of observed LCF



* Observational Estimates Resemble Models

with large CF decrease
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A SST most important large scale predictor
for ALCF

Change in Cloud cover in CMIP5 & predicted change in LCC inferred from observations
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Comparison with LES studies

m Observational estimate predicts A LCF dominated by ASST

m LES studies predict that ASST of leading order importance
causing A LCF, but other predictors also important



+
Summary

m Lower LCF associated with
m Warmer SST (+ SST)
m Weaker Inversion (- EIS)
m Drier Free Troposphere (- RHFT)
m Stronger large scale subsidence (+ w550)
m Weaker near-surface wind (- Ul10Om)

m Warming estimate: LCF decreases by ~2-3% K-!

m Observational estimates resemble GCMs with relatively large
CF decrease with warming

m Sign of relationships consistent with previous observational
studies (e.g. Myers and Norris, 2014, Myers and Norris, 2013)
and LES studies (e.g. Bretherton et al., 2014, Blossey et al., 2013)
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Extra Slides




Data

m MODIS:

m 8 day-random overlap assumption, 1 day-filtered for scenes with
not high cloud

m Low clouds: CTP>680 hPa






Large Scale Predictors

m EIS-stronger inversion traps moisture in PBL, enhanced cloud
fraction

m Free Tropospheric RH-drier free troposphere enhances
entrainment drying, reduced cloud fraction

m Large Scale Subsidence-weaker subsidence, higher inversion
height, enhanced cloud fraction

m SST-expect negative correlation with LCC, possibly because of
the enhanced liquid flux mechanism

m 10m Wind Speed-stronger wind stress enhances evaporation,
enhanced cloud fraction

m Multiple Linear Regression:

LCC = a,EIS + a,w550 + a,Ul0m + a,SST + a;RHFT
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Composite by regime, season

(a) LCC 1-Day




Large Scale Predictors

m EIS

m Free Tropospheric RH
m Large Scale Subsidence
m SST

m 10m Wind Speed

m Multiple Linear Regression:

LCC = a,EIS + a,w550 + a,U10m + a,SST + a;RHFT



+ : : : :
Comparison with Previous Observational

Studies

m Sign of regression coefficients consistent with previous
observational studies (e.g. Myers and Norris, 2013, 2014)
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Relationships Agree w/ Other Observational Studies

McCoy et al., in prep.
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Cloud Fraction Changes Dominate
in Subtropics

(b) SW Cloud Feedback Components
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Quality of Regression

m Multiple Linear Regression reproduces ~44% of variance
over 40° S-40° N

m Generally higher correlations in the 1-day/instantaneous
data set than the 8-day mean data set

m Negative correlations in Canarian and Californian
stratocumulus regions



Results

m Find that Low Cloud Fraction increases with
m Weaker large scale subsidence
m Larger Free Tropospheric RH
m Larger near-surface wind speed

m Larger EIS

m Climate change estimate: decreased Low Cloud Fraction
throughout 40°N-40°S with SST+1K
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LES: Cumulus under Sc
Scaled by CMIP3 Composite Changes
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LES: Trade Cumulus

Scaled by CMIP3 Composite Changes
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